Solid-State Method Synthesis of SnO2-Decorated g-C3N4 Nanocomposites with Enhanced Gas-Sensing Property to Ethanol
نویسندگان
چکیده
SnO₂/graphitic carbon nitride (g-C₃N₄) composites were synthesized via a facile solid-state method by using SnCl₄·5H₂O and urea as the precursor. The structure and morphology of the as-synthesized composites were characterized by the techniques of X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), thermogravimetry-differential thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS), and N₂ sorption. The results indicated that the composites possessed a two-dimensional (2-D) structure, and the SnO₂ nanoparticles were highly dispersed on the surface of the g-C₃N₄ nanosheets. The gas-sensing performance of the samples to ethanol was tested, and the SnO₂/g-C₃N₄ nanocomposite-based sensor exhibited admirable properties. The response value (Ra/Rg) of the SnO₂/g-C₃N₄ nanocomposite with 10 wt % 2-D g-C₃N₄ content-based sensor to 500 ppm of ethanol was 550 at 300 °C. However, the response value of pure SnO₂ was only 320. The high surface area of SnO₂/g-C₃N₄-10 (140 m²·g-1) and the interaction between 2-D g-C₃N₄ and SnO₂ could strongly affect the gas-sensing property.
منابع مشابه
Calcination Method Synthesis of SnO2/g-C3N4 Composites for a High-Performance Ethanol Gas Sensing Application
The SnO₂/g-C₃N₄ composites were synthesized via a facile calcination method by using SnCl₄·5H₂O and urea as the precursor. The structure and morphology of the as-synthesized composites were characterized by the techniques of X-ray diffraction (XRD), the field-emission scanning electron microscopy and transmission electron microscopy (FESEM and TEM), energy dispersive spectrometry (EDS), thermal...
متن کاملSynthesis and Enhanced Ethanol Gas Sensing Properties of the g-C3N4 Nanosheets-Decorated Tin Oxide Flower-Like Nanorods Composite
Flower-like SnO₂/g-C₃N₄ nanocomposites were synthesized via a facile hydrothermal method by using SnCl₄·5H₂O and urea as the precursor. The structure and morphology of the as-synthesized samples were characterized by using the X-ray powder diffraction (XRD), electron microscopy (FESEM and TEM), and Fourier transform infrared spectrometer (FT-IR) techniques. SnO₂ displays the unique 3D flower-li...
متن کاملSensing of Methanol and Ethanol with Nano-Structured SnO2 (110) in Gas Phase: Monte Carlo Simulation
The SnO2 films deposited from inorganic precursors via sol–gel dip coating method have been found to be highly sensitive to methanol and ethanol vapor. Three dimensional nano-structure materials have attracted the attention of many researches because the possibility to apply them for near future devices in sensors, catalysis and energy related. The sensitivity and selectivity of SnO2 (110) nano...
متن کاملZnO/bentonite Nanocomposites Prepared with Solid-state Ion Exchange as Photocatalysts
Photocatalyst nanocomposites of ZnO/bentonite clay are synthesized by Solid-state ion exchange method. Ion exchange intercalation process of clays is used to incorporate the catalyst into the basal space of the layered structure of clays. The purpose of this study is to find a new method, which is focused on simplifying and saving time to prepare ZnO-bentonite composite with photocatalyst prope...
متن کاملSynthesis and Characterization of Carbon Nanotubes Decorated with Magnesium Ferrite (MgFe2O4) Nanoparticles by Citrate-Gel Method
In the present work, magnetic nanocomposites of the multi-walled carbon nanotubes (MWCNTs) decorated with magnesium ferrite (MgFe2O4) nanoparticles were synthesized successfully by citrate-gel method. The shape, structure, size, and properties of the as-synthesized sample were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), transmission electron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2017